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The Lagrangian equations of motion are derived from the principle of least action in the
Hamilton -Ostrogradskii form, for a rigid body with cavities, partially or completely filled
with en ideal fluid possessing surface tension. First integrals of these equations are
considered,

Further conditions derived from the equations of motion are these for which there exists
an equilibrium or a stationary motion of the fluid-filled body, and which reduce to the ex-
tremal conditions {stationary state) of the potential energy Il or the altered potential energy
of the system W. Previously [1] we gave the formulation of the stability problem of a rigid
body with a fluid possessing surface tension, and the theorems which reduced the solution
of the stability problem to the problem of finding the minimum of IT (or W). In the practically
interesting cases, the problem of minimum W is solved by investigating the second vari-
ation W the derivation of which is presented below.

The theorem on instability of equilibrium of fluid filled body is proved in the nonlinear
formulation for the case, when the potential energy of the system does not have a minimum
in the position of equilibrium,

1. Let us consider an absolutely rigid body with a cavity filled partially or fully with
an ideal homogeneous incompressible fluid. The body and the fluid in it will be regarded
as a single mechanical system and its motion with respect to a fixed {inertial) system of
coordinates O’z,"z,' x5’ will be investigated. In addition, we introduce a moving system
of coordinates Oz, 2,5, which is rigidly attached to the body with the origin at some point
O in the body. The radius vector of an arbitrary point P, of the system relative to the
point O “will be denoted by r;, and relative to the point O by r,, The absolute velocity of

the point P can be represented in the form
v
Vi=Vpt+oxr,+ u,
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where v, is the velocity vector of the point P, ¢ is the vector of the instantaneous angular
velocity of the body,W, = dr, / di is the relative velocity vector of the point P in its
motion relative to the body. Obviously, for the points on a rigid u, = 0. The kinetic
energy T of the system is composed from the kinetic energy T, of the body and T, of the

fluid, where

Ty = YoM v+ Mvy- (0 x1) + o0 -0 0, T;= PSTOdT (1.1)

Let us define the notation: M, and I, are the mass and the radius vector respectively
of the center of mass of the hody, O is the inertia tensor of the body at the point
O, T° =1/,9% is the density of the kinetic energy of the fluid, 7 is the volume of the
space Z;ZyT3, occupied by the fluid at a given instant of time, O is the density of the fluid.

The volume T is bounded by the walls o; of the cavity which are in contact with the
fluid at a given instant of time, and by the free surface S (for the case of partially filled

cavity) the equation for which can be represented in the form
f(xlr Ty I3, t) = O (1.2)

The surface O of the cavity walls consists, generally speaking, of the surface 0y which
is in contact with the fluid at the given instant of time, and the surface 0; which is in
contact with air. The boundary between these parts of the surface O is the line ! of inter-
section of the surfaces S, 0. If the free surface S of the fluid does not intersect with the
walls O of the cavity then, obviously, the line ! does not exist. In the following, it will
be assumed that the surface S is smooth or,that it consist of a finite number of smooth

pieces of the surface.

The mass and motion of air in the cavity partially filled with a fluid will be neglected,

regarding the air pressure po as constant.

We shall further assume, that the considered rigid body with the fluid is constrained
by certain ideal geometric bounds,or is free. The number of degrees of freedom for the body
will be denoted by n(n<(6)-

The position of the system will be determined by the Lagrangian coordinates of the
body ¢; (j =1,...,n) and the Cartesian coordinates of the fluid particles z; (i =1,2,3).
In this case the vectors V; and ) can be represented in the form of certain linear functions
of the generalized velocities {; with the coefficients depending on the generalized
coordinates ¢j. Utilizing these expressions and substituting them into the formulas (1.1),
the kinetic energy of the body and the density of the fluid kinetic energy will be represented

in the form of the functions of second order in ¢;" and u;
Tl = TI (95., q_,i, t)’ T°=T° ((1_.".1 qja U, x; t)

The vector of the given active force applied to some point of the system will be denoted
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by F,. Among these forces will be the forces acting on the rigid body, mass forces acting

on the fluid, and surface tension forces.

Following the concept of Gauss, we shall assume that the contact of two nonhomogen-
ous media r and s along a certain surface, will result in tensile forces whose potential will
be equal to the product of the contact surface area and the coefficient of surface tension
Ors, dependent upon the nature of both media, and where, obviously, ®,s = dlsp. In the
present case there are, generally speaking, three such nonhomogeneous media: the rigid
body, the fluid, and the air,which will be ascribed the indices 1, 2 and 3 respectively.

For simplicity we will denote ¢ =33, .7 = 12, G2 = Q13- In futures we shall assume

these coefficients to be constant.

For the derivation of the equations of motion of a rigid body with a fluid we will
utilize the principle of least action in the Hamilton-Ostrogradski form. Taking into account

the condition of incompressibility of fluid, the principle can be written in the form {21

tg (67 + X F, - or) + Sp divdr,’ dv)dt = 0 (1.3)

to

Here the symbol & denotes the variation or a change of the corresponding quantity

during a possible displacement (for 5¢ = 0), where on the constant regions of integration
ér,) =0 for t=1ty, t=1 (1.4)

p (z1, 24, Zg, t) is the Lagrange multiplier which in the present case represents
hydrodynamic pressure.

Taking the variation of the expression for the kinematic energy of the system

T =Ti+p\Toar

. T
we obtain

r 3
o = 2 (3%5qj+%6qj')+ 2 PS(aTi 7+ 9 au,)d (1.5)

j=1 i=1

Let us now sum all the terms of the virtual work applied to the active forces over the
possible displacements of the system. Since for the points on the rigid body and fluid
particles r’ =1’ (g;> %;» 1), then

n

3
F, - or/ = D Qg +pSZ 07; dv — adS —
v s j=1 i=1 (1.6)

ar,’
_alécl-—-azﬁcz—po§n.6lr dS, QJZZFvgq%
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where Q; (j =1, ..., n)are the generalized forces, O;r is the variation of the radius
vector r = Z;i; -- Ty, - Ty, for fixed unit vectors of the moving axes i, n is the

unit vector along the external normal to the surface S.

The vector of possible fluid displacement relative to the rigid body §,r will be regarded
as a continuous differentiable function of the radius vector 1 satisfying the conditions of
incompressibility in the region 7, impermeability of the walls &, and of the conservation

of fluid volume

div §;r =0, n,-8,r =0, g n-6;rdS =0
8
Here N, is the normal to the surface 0. The variations of the free surface area S, the
wetted area O, and dry area O; of the cavity surface O for a possible displacement
are
88 — SZH(SI; s + Sé;ldl, 861 = — 85 = Sagz dl
S i l
. 1 1 1 1.7
6;::“-611', GCi:ni‘élr (1_1»2) H = T(ﬁ;ﬁ—m)

Here H is the average curvature of the surface, R, and R, are the main radii of cur-
vature for the surface S at a given point, taken as positive if the center of curvature
lies at the same side of the surface as the fluid, and negative otherwise ;11 and i, are
the unit vectors of the external normals to the contour ! of the surfaces S and O] located,
respectively, at the tangent surfaces to these areas. The angle between the normalsn, and
n, will be denoted by . Assuming that in the neighborhood of the contour ! the area of the

cavity walls O is sufficiently smooth and does not have sharp edges, we find that
8f, =8, cos 0 (1.8)
Let us also consider the integral
Sp div or’ dt = Sp div d;r dv

T <

Since
p div 8;r = div (pd,;r) — grad p-6,r
Then using the Gauss-Ostrogradskii theorem we obtain

\pdiveirdr = { pn.d;rds — grad p-8,r de (1.9)
T S T

Substituting the expressions (1.5) to (1.9) into the principle (1.3) we have
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l

)

+ 2 Q30g;— \ (20H + po— p) 8% dS — { (@050 + o — ) 8Lz dl —
=1 S 3

j=

i 3
\ (9T° aT° \
§ (6q 8g; + 3g; 6‘]:) i§P§<m6ui+5Eﬁxi+ Fiéxi)dr+

— S grad p-o;r dr}dt =0

Integrating by parts the terms (97 /0¢;)0q; and (87°/0u;)0u; and taking into account

the fact that the conditions (1.4) in the integration region are equivalent to the following:

6q,~=0, 8z; =0 for t=t,t=1

we obtain
t m s
S{]Zl( 3tg;r+aq +01)5%+§PS( ;ﬂgf +6:c +Fi—
L =1 <

___%.?> dz; d17——§(2ocH + po— p) 8L dS — IS (ot cos 0 + o3— dy) 6€2dl}dt -

Since 8¢, and Sxi are independent, the equations of motion for the rigid body with a

fluid are obtained in the Lagrangian form

%quj an‘Qv (=1-emm) (1.10)
%%—%zﬂ"%% (=129 (.11
as well as the boundary conditions for the pressure p on the free surface S
p = po + 20H (1.12)
and the boundary angle & on the I contour
(1.13)

€038 =(a; —ay) /a
To these equations and boundary conditions we add the equation for the incompress-
ibility of the fluid

divu =0 (1.14)
as well as the kinematic conditions on the rigid walls o,
Up = U'D = O (1-15)

and on the free surface S
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Of/ot -u-grad f =0 {1.16)

Thus, the study of motion for a rigid body with an ideal {luid in its cavities is reduced
to the ipvestigation of the simultaneous system of equations (1.10), (1.11) and (1.14) with
the boundary conditions (1.12), (1.13), (1.15) and (1.16). Note that in the case when the
forces of surface tension are neglected, the condition (1.12) becomes: p = po on S, and the
condition (1.13) vanishes. Condition {1.13) will thus be a consequence of less simple
equations (see formula (3.4)) which should be integrated by taking into account the forces
of surface tension in order to obtain the equation of the type (1.2). For the case when the
fluid fills the cavity completely, the conditions (1.12), (1.13} and (1.16) are naturally
excluded.

The equations (1.10) have the usual Lagrangian form. If it is assumed that p = 0,
which corresponds to the case of no fluid in the cavity, then the equations (1.10) will
represent the Lagrangian equations of motion for the rigid body alone,

Let us note that in the case when the active forces applied to the system have a force
function U (v, ), i-e.

F, = grad, U
the generalized forces
ar’ Flig
j== Dy . grad, U = -— -
Q; = 5, grady 3q; (7=1,...,n)

and the equations (1.10) assume the form
e - = =0 (G=1,...,n) (117

where [, = T | U is the Lagrangian fanctional. In the general case the force function

of the active forces acting on the system is
UxU1+p§U2dr+U2* (U = — (oS 4 o401 -} 0t23))

Here U, (g;, t) is the force function of the active forces applied to the rigid body,
U, (q;, i, t) is the force function of the mass forces acting on the fluid, b’f is the force
fanction of the surface tension forces. The function U will in the following be considered
continuous, and possessing continuous partial derivative along all coordinates. Denoting
by L° = I'"® 4 U, the Lagrangian function for a unit mass of the fluid, the equations

(1.11) can be expressed as

d 8L® 6L°. _ i ép . {1.18)
&, e P om (=123

since in presence of potential forces
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U, .
Fi=;9'5; (i=1,2,3)

Equations (1.11) or (1.18) represent Ealer’s hydrodynamical equations. Indeed, it is
easy to see that

are are
aui =7 (i =1,2, 3): 321 == (g¥g — (Oa¥s (123)

80 that the equations (1.11) can be expressed in the form of a single vector equation
d 1
g}-{-&))(v:l"—-“f)—gradp (1.19)

representing the Fuler equations referred to the moving coordinate system.

Note that the presented derivation of the equations of motion is valid also for the
case of the motion of the fluid in a fixed vessel. In this case if is only necessacy to put
everywhere g;=q; = 0G=1,...,n.

The equations of motion of the ideal fluid will be of the form of equation (1.11) or
(1.18) and (1.14) with the boundary conditions {1.12), {1.13), {1.15) and (1.16). At the
same time the system of coordinates Oz z,z;, associated with the rigid body will be a
fixed system, while the vector u will be the absolute fluid velocity, since v, = @ =0,

It should be noted that the representation of the equations of motion in the form of
Lagrange’s equations presents the possibility of applying the well developed methods of
analytical mechanics and control theory to the theory of motion of rigid bodies filled with
a fluid.

Since the body with the fluid is regarded as a single mechanical system it was not
necessary to determine the interaction forces between the rigid body and the fluid. In some
cases, however, it is neceasary to compute the forces exerted by the fluid and air in the cavit;
on the rigid body.

Let us find the expression for the generalized force of pressure of the fluid and air
on the walls of the cavity

4
p.n_S —
J.._«pn aq; ds

Applying the Gauss-Ostrogradskii formula and taking into acconnt that

’ ’

. or .o or' . Or
dlv(PTq-;):Pdw_gq?-i__aé; -grad p, le'E—_-O
we obtain
ar’
P;= S: 0; -grad pdv

since for air p = po. Replacing grad p by its equivalent from the Euler’s equation, results in
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or’ dv
P‘= AT . —_———
! PS 045 <F dt >d1'-
T

where, by contrast with the equation (1.19), dv / d¢ is the absolute derivative of the
vector V with respect to time ¢.

Let us consider the expression

o' dv _d ( 6r’> a o
Bg; " dt At \V'ag;) TV di ag;
It is easy to verify that
ov _ o dor_ov
aq]" 6q5 ’ dt aqj - 6q]-
and consequently
LA N AV JUK .
dg; " dt = dt \V" 9q; ) V' 8q; ~ dt 3q; ~ ag;

Substituting this expression into the formula for P ; we obtain

d 0T, Ty o
Pj:-—-d—tmﬁ—m'—}—pgl?-?jd‘v (1.20)

k7

Taking this into account, we can write the equation (1.10) in the form of equations of
motion for a rigid body

d oT, T,

=M +P (=1,...m) (1.21)

which is under the influence of the given applied forces and of the pressure forces exerted
by the fluid and air on the cavity walls. Here

or,
Q= z(1) Fo g,

v
where the summation occurs only along the points on the rigid body.

Equations (1.21) should be investigated along with the equations (1.11) and (1.14)
with the corresponding boundary conditions.

2. The equations of motion of a rigid body with a fluid permit first integrals under

specific conditions [2].

In the following it will be assumed that the forces applied to the system and the
motion of the rigid body are continuous, while the motion of the fluid occurs in its entirety
so that the fluid particle coordinates remain continnous functions of their initial values

and time.
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It is known that if the constraints imposed on the mechanical system are not dependent
on time explicitly, and the given active forces possess a s:ationary force function, then

there exists an energy integral.

Indeed, let the given condition be satisfied. Let us investigate the Lagrangian functional
L(gj 95, u;, ;) =T 4 U. Its derivative, on the strength of (1.17) and (1.18), is

dL  d [« ) 8 are 3¢ op dUy*
T=T[Z wrerte) 3 g e+ B fueet G e
T i=1 i=1 7

Utilizing the equation for incompressibility (1.14) and applying the Gauss-Ostrogradskii
theorem, we find, by taking into account the boundary conditions (1.12) and (1.15)

3
> S af; uidt—g(Po+2Ha)u ds

i=1

Bat in view of the formulas

as ¢ do; doy
W:SZHundS +3 uldl, "d—t‘_— T”——Sugdl uy = uscos 0 (2.2)
8 i

which can be obtained from the formalas (1.7) and (1.8) by replacing the symbol & by d/dt,
where u; = u-n; (i = 1, 2), we obtain,with (1.13) taken into account,

dUs*
5 =—-u§2HundS (2.3)

Since, by the conservation of the volume of the fluid

E UpdS =0
then obviously
3
op ay,*
Z S B, WA+ =0 (2.4)

Equation (2.1) then yields the energy integral

n
—L+ Z _QJ +PS Z 6u u,df-—coust, (2.5)
*
h is easy to verify by direct compntation that
n 3
. aL°
Z aq g+ e 8797? widt = 2T (2.6)
i=1 <

so that the integral (2.5) has the nsual form of the conservation of energy integral
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T - II = const (11 =1I ,+ PSszf 4 I* = — U + const)

T

Here il denotes the potential ener;y of the system.
Let further, the coordinates ¢, (@ = k <4 1, . . ., ») be cyclic, i.e.
0Ljdg, =0 (ai=k41,...,n) 2.7
In this case the equations (1.17) yield the cyclic first integrals
dLjdq, = const (a=%k+1,...,n) (2.8)

The momentum and second momentum integrals [2] are related to the integrals of the
type (2.8).

Applying the Routh’s method of ignorable cyclical coordinates it is possible to lower
the order of the system of differential equations (1.17) for the motion of the rigid body with
a fluid. Let us consider, for example, the case when the functional L is independent of the
rotation angle of the body about some fixed straight line 0’zs". Let us introduce the system
of coordinates ('E;E,zs’, capable of rotating about the axis x,” with the angular velocity
@ of the rigid body in its motion about this axis. The angle of rotation g, of the body
about x,” can be assumed to be the angle between the axes x,”and & . The kinetic energy

of the system is represented in the form (3]
T =TW4 g,/G) + g, (2.9)

where T(1) and chl) are the kinetic energy and the projection on the x, “axis of the

£ ]
second momentum of the system in its motion relative to the system of coordinates
0'E.Eyzs’; J denotes the moment of inertia about the x; “axis. The first integral of the form

(2.8)

oL .
_BE,T - chlsl + g, J =k = const

corresponds to the cyclical coordinate g,.
Hence, we find
g =(k—GIH /T
and exclude this quantity from the Routh functional R =L —g¢, k.

Consequently we obtain by the usual method [4] the equation of motion for a rigid
body with a fluid in form of the Routh equation

e — =0 G=1,...,n—1) (2.10)

If the function of R does not depend on time explicitely, then these equations along
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with the equations (1.18) permit a first energy integral
R, — R, = const (2.1
where R is the homogeneous and of the degree s with respect to the velocities q; » part
of the functional R = R, + R, 4 Ro. It is easy to verify that
R, = T 7@ _ G(Ix),% /27, Ry= — Il —k2/2J (2.12)

so that the integral (2.11) will become
T@ 4 I $ k¥ / 2J = const

3. The equations of motion for a rigid body with a fluid permit, under certain conditions,
solutions describing equilibrium or a stationary motion of the system. Let us determine
these conditions assuming that the given active forces applied to the system are the poten-
tial ones. Assuming that ¢; =0, u; =0(i =1,2,3,j =1,...,#) in (1.17) we obtain

oL [6g, = 6U/aq3.=0 ff=1,...4n) (3.1

Consequently, at the equilibrizm position of the rigid body with a fluid the force func-

tion U, or the potential energy of the system II, have extremal (stationary) values, i.e.

U =681 =0 (3.2)

Equations (3.1) define the coordinates of the rigid body at equilibrium. Without loss
of generality it can' be assumed that ¢;=0 (7 =1, . . ., n) will be the roots of the
equation (3.1). The fluid at equilibrium occupies the region Ty, bounded by the cavity walls
and the free surface. The equation for the latter I/, — p/p = const is found by integrat-
ing the equation (1.18) for u; =0, ¢; = ¢; = 0, Taking into account the boundary con-
dition (1.12) it becomes

pU, — 20 H = const (3.3)

The constant in the right hand part of the equation (3.3) cen be determined from the
known values of the average curvature H and the force function U, for some point of the
free surface. From the differential geometry [5] it is known that

EN —2FM +GL (3.4)
EC—F

2H =

where E, F, G, and L, M, N are the coefficients of the first and second differential Gauss

forms for the surface. Thus, equation (3.3) is a nonlinear partial differential equation.

The form of the free surface S of the fluid at equilibrium is determined by integrating
the equation (3.3) with the bouwdary condition (1.13) taken into account. The integration
of this equation is, generally speaking, quite difficult [6]. For the case when the surface
tension forces can be neglected, the equation (3.3) becomes the boundary equation for the
free surface of the fluid at equilibrium.
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Let us assume now that among the coordinates 9 of the rigid body there is a cyclic
coordinate 9, Then the equations of motion for a rigid body with a fluid permit a particular
solution in which all non-cyclic coordinates q; (j=1,..., n —1) remain constant as
well as the velocity g,’, corresponding to the cyclic coordinate 4, while all non-cyclical;
velocities of the body ¢; and the relative velocities u; of the fluid particles are zero.
Such a solution describes a steady motion representing a uniform rotation of the entire
system as a single rigid body with an angular velocity ¢,," about the axis x,”. From the

equation (2.10) for a fixed value of the constant % — k, follow the equations
ORy/0g; =0 (1=1,..., n—1) (3.5)

for the coordinates ql. of the rigid body in steady motion. Consequently, for the steady
motion the altered potential energy of the system W .—=— R, = k?*/2J 11 attains the

extremal (stationary) value
SW =0 (3.6)

Let us assume that ¢; =0 (/=1...., n—1) satisfy equations (3.5). The fluid
in this case occupies the region T;, bounded by the walls of the cavity and the free surface

So. The equation for the latter will be found by integrating (1.18) with
q; =q5'=0 G=1,....,n—1), ¢, =0, u =0 (=1,23)
and by taking into account the boundary conditions (1.12)

o U, + o (2,2 + 2,'%)/2] — 2aH — const 3.7

Equation (3.7) differs from the equation (3.3) only in the form of the force function;

everything previously said about equation (3.3) is also valid for (3.7).

Paper [1] gives the definition of the stability of motion for a rigid body with a fluid
possessing surface tension and proves the theorems reducing the question of stability of
a steady motion (or equilibrium) to the minimum problem of the altered potential energy W
(or the potential energy II) of the system. For the cases of practical interest the minimum
problem of ¥ (or TI) can be solved by investigating the second variation §217 (or $2II).
In taking the variation the fluid volume 7" must be conserved, and let

= —'2‘%2+H+7»Sdr(x = const)

The fisrt variation of W is found easily as
n—1
8w = 3 %?—;Gq’.——§[pU,+ L Bop (@ + ) — 2aH —1.]8¢dS +
= (3.8)
+S (xc0sO + oy — aiy) 84 dl

1
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It is assumed that the quantity 5 is a continuous differentiable function of the
curvilinear coordinates u, and v of a point on the free surface of the fluid possessing con-
tinuous partial derivatives with respect to u, and v and satisfying the condition of con-
servation of the fluid volume

8

In view of the independence of Oq. and 5 we obtain the equations (3.5) from the
equation 8W = 0 for the coordinates of the rigid body in a stationary motion and the equa-
tion (3.7) of the free surfaces S, of the fluid in the same motion as well as the condition
(1.13) for the boundary angle.

For simplicity it will be further assumed that the area of ‘equilibrium’ S, is simply
connected and smooth. The line of intersection of the surface S, with the walls of the
cavity g, if this line exists, will be denoted by I, and will be regarded as piece-wise
smooth. The unit vector of the tangent e to the contour l, is oriented so that in going
around [, the region S, remains on the left, for the observer located along the ontward
normal n to Sp. The moving system of coordinates Ox,z,z,, fixed to the rigid body will be
selected so that in the unperturbed position of equilibrium the Ox, axis would coincide
with the ('zy’ axis. For brevity we introduce the notation

@ (qjv :ti) = p [U, (2, zd', z3') + Yy 0 (02 + 2] x> 95 % (3.10)
after which the equation (3.7) can be expressed as
@ (0, z;) — 20H = A=const (3.11)

Taking the variation of equation (3.8) we obtain the following expression for the

second variation of W in the neighborhood of the considered stationary motion of the system

n—i n—1

o= 3 (W _2( > (%@
i.%—-l (aq‘ aqf)° %, 2§,:§1 (aqf)" o095 + (3.12)

+ 8 12807807 + (AT —{ 8(@—2Ha—n)aras+ \ ad cos 00, dl

o b
Here

n—1

aJ ’ ’
Al-] = 2 <57]—-)o (qu, AgJ = Y § ($1 2 + 22 z)xi’—»qj, x; 6; ds (3.13)

J=1 ]

where the index O denotes the value of the corresponding quantity for the unperturbed
motion,

Let us obtain the explicit expressions for the terms under the integral signs in the last
two components of the right hand side of the inequality (3.12). We consider the first one.
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Between the perturbed and unperturbed surfaces of the fluid it is possible, apparently, to
establish a correspondence along the normals to the unperturbed surface. Also, the vari-
ation of the average curvature is determined from the formula (5]

8H = — (2H? — K) 8{ — /5 AL (3.14)
Where
K=1/RRy AL = (E8ls, — 2801 + GOLu) / (EG — F?)

denote respectively the Gauss curvature of the surface Sy and the second differential para-
meter of Beltrami, §7;; are the covariant second derivatives of the function 5, Utilizing
(3.14) and (3.9) we obtain

S 8 (D —2Ha—1) 8L dS=§ [(‘;i:)oag + 20 (2H? —K) 8L + aA"SZ_‘,] 8tdS (3.13)
S, o

According to Green's formula (5]

§6§A°6§ds = S 14 ‘;—zf- dl — i \AGIGAY (3.16)
0 e 0

where

V°8L = [E (82),° -— 2F (80),, (82), + G (80),*V(EG — F?)

denotes the first differential Beltrami parameter, (87),, and (8{), are the derivatives
of the functions 8¢ with respect to u, and v respectively, d0(/ds, is the derivative of
8¢ along the outward normal n, to the contour [, of the surface Sy. On the strength of (3.16)

the equality (3.15) can be expressed as
(3.17

ga (® —2Ha—1) 8LdS= i{[(‘z—f)v 4 99 (2 — K)] 60 — avoac} is +a& 5 %fsi_lg i

L] lo
We find now

§cos 0 = ny-8ny + 0y -8ns.
On the surface S, in the neighborhood of the contour Iy, the coordinate lines u, and v
will be represented by [, and the curves orthogonal to it. The unit vectors of the tangents
to these curves are ¢ and n,. Also

m=r,/ VG, Sm=0r,/ VG—r 8 V@G

Assuming that for the points on the contour [,

dr = 8¢r, + 8in

we find
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Br, = (— G B8 — 2M8L) v, /2 + [(8F), + (G,5% — 2N8L) / 26] [, + [(87), + NOE] m
8 VG =r,br,/ VG = [(8%), + (6,0t —2N6L) /26] VT
so that
8y = (— G,8% — 2M8L) v, /2B VT +((8), + N6Eln/ VG

Taking into account that the vector n, is orthogonal to the vector r, = V Ee, we
find
1,80y = [(88),/ VG4 N VG8E/Gla-mg

According to Meusnier’s formula N / G = 1 /Rn, where R, is the radius of curvature
of the cross-section to the normal surface S, in the direction n,, an element of the arc of
which is ds; = V Gdo-

Since ¥ G8E = 6f,, n-n, = sin 0,

ng-0n, = (d6( / ds, + 81/ R, ) sin B (3.18)
Similarly we find
n;-8n, = — sin 08, / R, (3.19)

where Rn, denotes the radius of curvature of the cross-section normal to the walls of the

cavity ¢ in the direction n, . Summing the equalities (3.18) and (3.19) we obtain

8 cos 0 = (a8% / ds;, + 8¢, / R, — 803/ R, )8in® (3.20)

Note that the formula (3.20) allows one to obtain the boundary condition for the functions
8¢ on the contour I, of the surface S, for the case of the linear treatment of the problem.
Indeed, from the condition (1.13) for the boundary angle formed by the free surface of the
fluid and the cavity walls, it follows that in the first approximation we have on the contour
lo’

dol /ds1 =080a/ R, — 801/ R,  for sinB=:0 (3.21)

When sin 8 =0, it is clear ‘that on [y
00 =sin 063 =0 (3.22)

On the basis of the equalities (3.12), (3.17) and (3.20) as well as (1.8), the expression
for the second variation of the altered potential energy of the system becomes

n—1i

W — W )
W= . 1.Z=1 (aqiaqj )0 ‘?91'59,- + 3—0 [2A1AWT 4 (AJ)?) —

n—l1

_éS, {2 ,§1 (g_:-)oﬁquc + [@%‘))o + 2a 2H? —K)] (82)*— av%;} S+ (3.23)
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+ “S <Z%T1" 22)5€2sin8d£ (3.23)

b

while the function O (g;, ;) and the quantity A J and Ao/ are defined by the equalities
(3.10) and (3.13).

Note that it is possible to obtain, from the expression (3.23), the particular formula

for the second variation of the potential energy system (for @ = 0):

1= 3] (o), b, — | oo 3 (52 s+ [p (), +
i,j= (3.29)

+ 20 (2H? —K)}(ag)ﬁ_ aV°ag} s + a 5 (881 ] R, — 8%a [ Ra,) 8%2 sin 0 dl
L
From the principles of the variational calculus it is known that if the altered potential
energy of the system W is to have a minimum it is necessary that its second variation §2IW
be non-negative, and it is sufficient that the second variation be strongly positive for all
sufficiently small absolute values of g; and Sxi, which satisfy the condition that the con-
dition of incompressibility and (3.9) are not simultaneously equal to zero,

The problem of determining the conditions for strong positiveness of the second vari-
tion &W can,be a known method [7],be reduced to the problem of finding the criterion of
positiveness of the smallest eigen-value of the corresponding boundary value problem.

4. Let us investigate the question of the character of equilibrivm of a rigid body with
a fluid in the case when the potential energy of the system does not have a minimum at
the position of equilibrium. For the system with a finite number of degrees of freedom the
proofs of the Lagrange redaction theorem are given by Liapunov and Chetaev [4].

An analogous theorem can be proved for a rigid body with a fluid. Let us restrict
ourselves to the case when in the neighborhood of the position of equilibrium the potential

energy of the system is of the form
II =1I® 116 4.

where JI{®) is a k-th order homogenous functional for the deviation of the system from the

equilibrium position.

Theorem 4.1. If for an arbitrarily small neighborhood of the position of equilibrium for
a rigid body with a fluid the potential energy [l of the system can assume negative values
and, if at the same time, the signs of the expressions I1® | II® .. ., and
2[1® 4 3II® - ... are defined by the quadratic functional [I(2), then the position

of equilibrium is unstable.

Proof. Assume that in the position of equilibrium the coordinates of the rigid body are
95 =0( =1, ..., n), the coordinates of fluid particles are z; = z;, (i =1, 2,3} and
that the fluid fills the volume 7. Let at the position of equilibrium the system potential
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energy be Il = 0 and be not a minimum; at the neighborhood of equilibrium there exists a
region where I1 << {.. Disturbing the equilibriam position of the system momentarily, we
investigate the perturbed motion which is described by the equations {1.17), (1.18) and
(1.14) with the corresponding boundary conditions.

The radins vector of the displacement from equilibrium of the fluid particle relative to
the rigid body will be denoted by Ar = r — ry. Obvicusly,
t
Av = Agr+ S udt (4.1)
ly
where Agr is the radius vector of the initial fluid displacement, and where in view of
incompressibility, div Agr = 0. Then, in view of (1.14) it follows from (4.1) that

div Ar =0 (4.2)

The slope of the perturbed fluid surface relative to the unperturbed surface is character-
ized by the partial derivatives n, and n,, of the function n (u, v) = A{. The maximum of
|n,], and |n,| will be danoted by <7 which we shall call the inclination of the perturbed
surface relative to the unperturbed one.

Let us consider the functional [4]

V=—(T+1IN) (Z} Ba; q,+2 S Ax,dz) (4.3)

In a sufficiently small neighborhood of the equilibrium position, i.e. in the region of
small absolute values of the corrdinates g; and Ax,, the inclinations \/, and the velocities
9 j and u; we choose an infinite-dimensional region (C) existing for arbitrarily small
absolute quantiues g Axi, v, ql and u; and defined by the simultaneous inequalities

8
0
T+I<O, q,+ 3 ps Azdy >0 (4.9
ui
J:al f==1

The existence of the first of these inequalities for sufficiently small 9;, and u; is
obvious in view of the conditions of the theorem for the nonexistence of the minimum of I1,
At the points in the neighborhood of the position of equilibrium where this inequality is
fulfilled, the velocities g;’, and u; can always be selected of such a sign that the second
inequality in (4.4) is fulfilled.

In the region (C) the functional V is, obviously, bounded, i.e. there exists such a
positive number N that in the region (C)

IVI<N (4.5)

The time derivative of the functional V is, in view of the equations of perturbed

motion, equal to
n

. 8L
v :——(T—}-H}{Z (aq % +(%'~qj-)+
2 _
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3
\ or° |, 8Us _18p\p, o OT° .]dr}
+ZPSK dx; + 2r; H@E:} i duy “

i=1 T T *
Taking into account the relation

n

2 6q3 9 +2 S O v =27 (4.6)

j=1

T

the validity of which can be verified by direct computation, the expression for V'can be

written as
.7

v—~a’+m{zrfz L B i A :§5>w+2aq 0}

i=1

As the consequence of the fact that the constraints imposed on the rigid body are
assumed not to depend explicitely on time, the kinetic energy T is positive-definite with
respect to g; and u;. For suificiently small absolute values of the quantities g; and Ax;,
the expression

2T+2 aq q; + 2 S__ Ay dv
i=1 LES B
will, because of continuity, also be positive-definite with respect to ¢;° and u,.
Let us now consider the remaining terms in the expression (4.7). Utilizing the formula

(3.24) and taking into account that IT = II'¥ 4 1I®® . . .| where ‘¥ = §11/2,
né® —= 8311/ 3!, we find

n
U a1 ol ) S U,
Bq; T 0q; T "—21(6%3% eqi+pso( %, )onds
so that
n
§2I ou
2 q3 T ;—1( >oqiqj e io ;i2=1 ( 6‘9; )oands te (4.8)

Further, in view of (4.2) and (1.12) we obtain

i pSaa[iz Axid‘rng [Uz 0, xl)—{—Z (aq ) q; +<agf)0njj"d5+'"

i=1 T S, FES )
3
> )5

Applying Green’s formula (3.16) results in

; dt = aﬂ [2H — 2 (2H? — K) n — A°n] ndS
S,
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™M e

Il

i=1

s R
Safi Ax,dr_ag [2Hn—2(2H’—K)n’+V°n]dS—axn-d_"
b1 So l.

Thus, with the conditions (3.21) and (3.11) taken into account, we obtain

n n
Z ry 9:*‘28(9% do)dnde=— 3] (%)omﬂ

j=1 i=1l7T y =1

§[ an q: +P( [,Iz)"’+2a(2H“—K)n=—av°n]dS+
. J=
1

) (A

where the dots indicate terms of the type- e 4+, According to (4.7) we find

°°S°> n?sin@dl4-...=—20® . .., _ ap)

V=—(T+ H){2T+Z aqT q,+pSZ o A —2 2 4 .. } (4.9)

Ti=l1

Since in the region (C) the potential energy is negative, while the signs of Il and of the
expression 2I1® 4 311 4 . .. are determined by the terms of second order II® < 0,
then in the region (C) this expression is negative definite : 2I1®) - 311(3) +...<0.

Consequently, in the region (C) the derivative of the functional V is positive definite
with respect to ¢j, Agzj, ¢j', and w, V/.

Also the positive definiteness of the functional V" in the region of positiveness of
the functional V is determined analogously to the sign-definiteness of the function [4] in
the region ¥ > 0. Selecting the initial perturbations gj, Ao%i, Vo, ' and u;, in the
region (C) arbitrarily small so that the initial value ¥, > 0, we find from the equation

t
V=V, + S Ve (4.10)
te

that in the course of time the inequality (4.5) will be violated, which proves the instability
of the position of equilibrium.

Theorem 4.2. If in the position of equilibrium of a rigid body with a fluid potential
energy of the system I —< II(® - II® ., . does not have a minimum and this is
established from its second variation of II(2) without the necessity of considering higher
order terms, then the equilibrium position is unstable.

The proof can be presented by an almost identical repetition of the proof given by
Chetaev [8] for the analogous case of a system with a finite number of degrees of freedom.

In an infinite-dimensional space of the variables ¢, Ax n, and.n, we consider the
hypersphere with the center at the position of equilibrium and an arbitrarily small radius
e > 0. On this hyperspheré the continuous functional [l assumes for some values of a,
of the considered variables, its smallest value I,. In accordance with the assumption about

the potential energy II this smallest value will be negative and is determined by the
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functional II*). Consequently, ITy will be of second order of smallness in comparison with
e. Let the region which is heing studied for instability of the perturbed motions, be defined
by the inequalities

lgl<t,  aml<t (g l<y, Jui (<1, IvVi<i 41

for an arbitrarily small positive /. It will be assumed that the quantities [ and & are related
by some definite number, which may be very large.

Under such an assumption about the choice of ! and €, the expression

oM, 4 I® 4 20® 4 | |, (4.12)

in the region (4.11) will undoubtedly be negative. In the perturbed motion the initial values
of our variables will be a , and the initial values of all velocities will be assumed zero.
Such a perturbed motion will occur in accordance with the law of kinetic energy

T + II = Il, and, consequently, will occur in the region defined by the inequality

I, —0 >0 (4.13)
Let us consider the functional
n 8
V= ,Z_"l aqj a4 p Sg | dv (4.14)

and its time derivative which in view of the equations of perturbed motion (1.17), (1.18)
and (1.14) is

8
'-—2T+2 3T Sg.gl_ Avydy — 2@ 4 .. (4.15)
= O =1

For the considered perturbed motion occurring in the region (4.13), the derivative V"
will be positive. Indeed, as was shown above, the expression

2T+Z .___qj-f-pSZ Fy Az;dv

T =1

for sufficiently small I will be positive-definite with respect to ¢;° and u;, and
—@O® 4 31® 4 .. )>0 (4.16)

in view of (4.12) and (4.13). Let us denote by /“the minimum of the expression in the left
hand side of the inequality (4.16) inside the region defined by the inequalities (4.11) and
(4.13). From the equation (4.10), where in the given case Vo =0, we conclude that

V > U (t — to), as long as the variables do not violate the inequalities (4.11) during the
interval of to to ¢. Consequently, with the course of time the inequality (4.5) will be
violated. The theorem is proved.
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It is worth noting that, in the linear formulation, the reduction of the Lagrange theorem

for a rigid body with a fluid was proved by Krein [9], in whose work the surface tension was
not considered. In the nonlinear formulation the reduction of the Lagrange theorem for solid
bodies was considered by A.A. Movchan [10] with the assumption that the potentials of
external and internal forces are homogeneous of order m.

10.
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