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The Lagraugian equations of motion are derived from the principle of least action in the 
Hamilton~s~o~adskii form, for a rigid body with cavities, partially or completely filled 
with an ideal fluid possessing surface tension. First integrals of these equations are 

considered. 

Further conditions derived from the equations of motion are these for which there exists 
an equilibrium or a stationary motion of the fluid-filled body, and which reduce to the ex- 
tremal conditions (stationary state) of the potential energy II or the aItered potential energy 
of the system W. Previously [I] we gave the formulation of the stability problem of a rigid 

body with a fluid possessing surface tension, and the theorems which reduced the solution 
of the stability problem to the problem of finding the minimum of lI (or iF’). In the practically 
interesting cases, the problem of minimum W is solved by investigating the second vari- 
ation &2W the derivation of which is presented below. 

The theorem on instability of equilibrium of fluid filled body is proved in the nonlinear 
formulation for the case, when the potential energy of the system does not have a minimum 
in the position of equilibrium. 

1. Let us consider an absolutely rigid body with a cavity filled partialIy or fully with 

an ideal homogeneous incompressible fluid. The body and the fluid in it will be regarded 

as a single mechanical system and its motion with respect to a fixed (inertial) system of 

coordinates 0’z1’z2’~Q’ will be investigated. In addition, we introduce a moving system 

of coordinates OX~ZZ~X~, which is rigidly attached to the body with the origin at some point 

0 in the body. The radius vector of an arbitrary point P, of the system relative to the 

point 0 ‘will be denoted by ri, and relative to the point 0 by r.,, The absolute velocity of 

the point P, can be represented in the form 
V” = vo + 0 x r” + uy 
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where V, is the velocity vector of the point P, ok is the vector of the instantaneous anguldr 

velocity of the body,U, = dr, / dl is the relative velocity vector of the point p, in its 

motion relative to the body. Obviously, for the points on a rigid uy = 0. The kinetic 

energy T of the system is composed from the kinetic energy T, of the body and T, of the 

fluid, where 

T1 = 1/2M1~02 + Mlvo . (co x rl) + l/zw .0(l) . w, T, = p 5 T” dr (1.1) 
7 

Let us define the notation: MI and r, are the mass and the radius vector respectively 

of the center of mass of the body, @(I) is the inertia tensor of the body at the point 

0, To = ‘/,?? is the density of the kinetic energy of the fluid,Tis the volume of the 

space z~z~z~, occupied by the fluid at a given instant of time, pis the density of the fluid. 

The volume his bounded by the walls o1 of the cavity which are in contact with the 

fluid at a given instant of time, and by the free surface S (for the case of partially filled 

cavity) the equation for which can be represented in the form 

f (Xl? x-2, x3, t> = 0 (1.2) 

The surface uof the cavity walls consists, generally speaking, of the surface 0, which 

is in contact with the fluid at the given instant of time, and the surface CT; which is in 

contact with air. The boundary between these parts of the surface Qis the line 1 of inter- 

section of the surfaces S, GX If the free surface S of the fluid does not intersect with the 

walls P of the cavity then, obviously, the line I does not exist. In the following, it will 

be assumed that the surface S is smooth or,that it consist of a finite number of smooth 

pieces of the surface. 

The mass and motion of air in the cavity partially filled with a fluid will be neglected, 

regarding the air pressure po as constant. 

We shall further assume, that the considered rigid body with the fluid is constrained 

by certain ideal geometric bounds,or is free. The number of degrees of freedom for the body 

will be denoted by n(n<ts)- 

The position of the system will be determined by the Lagrangian coordinates of the 

body qj (j= I,..., n) and the Cartesian coordinates of the fluid particles Xi (i = 1,2,3). 

In this case the vectors V, and o can be represented in the form of certain linear functions 

of the generalized velocities qj’ with the coefficients depending on the generalized 

coordinates Qj. Utilizing these expressions and substituting them into the formulas (l.l), 

the kinetic energy of the body and the density of the fluid kinetic energy will be represented 

in the form of the functions of second order in qi’ and ai 

Tr = Tt(~j.7 Qj, t), T” = T”(qj’, qj, ui, xi, t) 

The vector of the given active force applied to some point of the system will be denoted 
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by Fv. Among these forces will be the forces acting on the rigid body, mass forces acting 

on the fluid, and surface tension forces. 

Following the concept of Gauss, we shall assume that the contact of two nonhomogen- 

ous media r and s along a certain surface, will result in tensile forces whose potential will 

be equal to the product of the contact surface area and the coefficient of surface tension 

ars, dependent upon the nature of both media, and where, obviously,a,, = asr. In the 

present case there are, generally speaking, three such nonhomogeneous media: the rigid 

body, the fluid, and the air,which will be ascribed the indices 1, 2 and 3 respectively. 

For simplicity we will denote a =a 23, a 1 = a 12, a 2 = a 13. In futures we shall assume 

these coefficients to be constant. 

For the derivation of the equations of motion of a rigid body with a fluid we will 

utilize the principle of least action in the Hamilton-Ostrogradski form. Taking into account 

the condition of incompressibility of fluid, the principle can be written in the form [2] 

F, . 6rV’ + 
s 

p div i3rV’ dz dt = 0 
1 

5 

(1.3) 

Here the symbol 8 denotes the variation or a change of the corresponding quantity 

during a possible displacement (for 6t = O), where on the constant regions of integration 

I3r” = 0 for t = to, t = tl (1.4) 

p (% %r %, t) is the Lagrange multiplier 

hydrodynamic pressure. 

which in the present case represents 

Taking the variation of the expression for the kinematic energy of the system 

we obtain 

T = T1 + p T”dz 
s 5 

u= i (%j+gdqj*)+ 5 pS(-g8xI+g*+r 
jBl ‘qj j 

(1.5) 
i=1 T i 1 

Let us now sum all the terms of the virtual work applied to the active forces over the 

possible displacements of the system. Since for the points on the rigid body and fluid 

particles r’ = r’ (qj, z+, t), then 

3 

xFF,.6rv’= i Qj6qj+p x Fi8xid~-&S- s ” . j=l r i=l (1.6) 

- a18al - Qj=xF..z 
Y 
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whereQj (j = 1, . . . , n) are the generalized forces, 6,r is the variation of the radius 

vector r = .z,i, + 3$, + zai, for fixed unit vectors of the moving axes i,, n is the 

unit vector along the external normal to the surface S. 

The vector of possible fluid displacement relative to the rigid body 6,r will be regarded 

as a continuous differentiable function of the radius vector r satisfying the conditions of 

incompressibility in the region 7, impermeability of the walls 0, and of the conservation 

of fluid volume 

div 6,r = 0, n,.6,r = 0, 
c 

n.G,rdS = 0 
B 

Here n, is the normal to the surface CY. The variations of the free surface area S , the 

wetted area 0; , and dry area O, of the cavity surface c for a possible displacement 

are 

6S = ’ 2HQ dS $ 
I 5 

6& dl, 6al = - 60, = & dl 
s 

S I 1 

b[=n.&r, 651. = ni . 6,r (i = 1,2) H = + (& + &) (1.7) 

Here H is the average curvature of the surface, R, and R, are the main radii of cur- 

vature for the surface S at a given point, taken as positive if the center of curvature 

lies at the same side of the surface as the fluid, and negative otherwise ; n, and n2 are 

the unit vectors of the external normals to the contour 1 of the surfaces S and 0; located, 

respectively, at the tangent surfaces to these areas. The angle between the normalsnl and 

n2 will be denoted by fl . Assuming that in the neighborhood of the contour 1 the area of the 

cavity walls u is sufficiently smooth and does not have sharp edges, we find that 

Let us also consider the integral 

Since 

s ‘pdivbr’dz = pdiv6,rd~ 
s + + 

p div 6,r = div (p&r) - grad p.hlr 

Then using the Gauss-Ostrogradskii theorem we obtain 

i pdiv&rdt = 5 pn.&rdS- i gradp.&rdz 
7 S 7 

(1.8) 

(1.9) 

Substituting the expressions (1.5) to (1.9) into the principle (1.3) we have 
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Integrating by parts the terms (aT/aqj.)Gqj. and (dT”/~Yu&t and taking into account 

the fact that the conditions (1.4) in the integration region are equivalent to the following: 

6gj = 0, 6Zi =: 0 for t = to, t = tl 

we obtain 

tt n 

SP( 
d zfa&+Qj)hj+ f$p[(-kz+ae+Fi- -- 

j=l 
dt aclj 

i=l T 

i 'ifi) bxid~-_((2xH+P,-P)8~dS-S(~cos9+a,--~,)~~~dZ}dt=O --- 

s 1 

Since 8qi and axi are independent, the equations of motion for the rigid body with a 

fluid are obtained in the Lagrangian form 

d i3T aT 
dtq-q= Qi (j=i,...,n) 

d aT” aT” F. 1 ap 
dt aui axi = a--p% (i=1,2,3) 

(1.10) 

(1.11) 

as well as the boundary conditions for the pressure p on the free surface S 

P = PO + 2&Y 

and the boundary angle 8 on the 1 contour 

(1.12) 

cos 0 = (us -aJ la (1.13) 

To these equations and boundary conditions we add the equation for the incompress- 

ibility of the fluid 

div u = 0 

as well as the kinematic conditions on the rigid walls a, 

(1.14) 

and on the free surface S 

un = u-xl = 0 (1.15) 
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dfiirl-;- u-grad f = 0 0.16) 

Thus, the study of motion for a rigid body with an ideal fluid in its cavities is reduced 

to the investigation of the simultaneous system of equations (l.lO), (1.11) and (1.14) with 

the boundary conditions (1.12), (1.13), (1.15) and (1.16). Note that in the case when the 

forces of surface tension are neglected, the condition (1.12) becomes: p = PO on S, and the 

condition (I.131 vanishes. Condition (1.13) will thus be a consequence of less simple 

equations (see formula (3.4)) which should be integrated by taking into account the forces 

of surface tension in order to obtain the equation of the type (1.2). For the case when the 

fluid fills the cavity completely, the conditions (1.12), (1.13) and (1.16) are naturally 

excluded. 

The equations (1.10) have the usual Lagrangian form. If it is assumed that p z 0, 

which corresponds to the case of no fluid in the cavity, then the equations (1.10) will 

represent the Lagrengian equations of motion for the rigid body slone. 

Let us note that in the case when the active forces applied to the system have a force 

function U (r,‘, t), i.e. 

the generaIized forces 

F, = grad,,jU 

and the equations (1.10) assume the form 

d ar, xl -__-= 
dt aq; aq, 

o 
(i=f n) ,‘..I (1,171 

where 15 = T + u is the Lagrangian functionaL fn the general case the force fun&an 

of the active forces acting on the system is 

the ui (Qj, 0 is the force function of the active forces applied to the rigid body, 

0, (qj, 4, 2) is the force function of the maas forces acting on the fluid, U,*is the force 

function of the surface tension forces. The function U will in the following be considered 

continuous, and possessing contianous partial derivative along all coordinates. Denoting 

by J?” = T” + U2 the Lagrangian function for a unit mass of the fluid, tbe equations 

(1.11) csn be expressed as 

since in presence of poteqtial forces 
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F =?!!!i i axi (i = 1,2,3) 

Equations (1.11) or (1.18) represent Euler’s hydrod~amicnl equations, Indeed, it is 

easy to see that 

aT” 
-= 
au+ vi (i=%,2,3), +,v,-m,, Q23) 

SO that the equations (1.11) can be expressed in the form of a single vector equation 

(lJ9) 

representing the Euler equations referred to the moving coordinate system. 

Note that the presented derivation of the equations of motion is valid also for the 

case of the motion of the fluid in a fixed vessel. In this case if is only necsssacy to put 

everywhere qj= q; = o (i = 1, . . ., n). 

The equations of motion of the ideal fluid will be of the form of equation (1.11) or 

(1.18) and (1.14) with the boundary conditions (LIZ), (1.131, (1.15) and (1.16). At the 
same time the system of coordinates Oqqz,, associated with the rigid body will bs a 

fixed system, while the vector u will be the absolute fluid velocity, since v,, = 0 = 0. 

It should be noted that the representation of the equations of motion in the form of 

Lagrange’s equations presents the possibility of applying the well developed methoda of 

analytical mechanics and control theory to the theory of motion of rigid bodies Hlled with 

a fluid. 

Since the body with the fluid is regarded aa a single mechanical system it was not 
necessary to determine the interaction forces between the rigid body and the fluid. In some 

cases, however, it is necessary to compute the forces exerted by the fluid and air in the cavity 
on the rigid body. 

Let us find the expression for the generalized force of pressare of the fluid and air 

on the walls of the cavity 

Applying the Gauss-Ostrogradskii formula and taking into acoonnt that 

div p$$ 
( > =pdiv% + -& egradp, div-$=() 

we obtain 

P j = 
s 

g *grad pdr 
‘f 

since for air p = po. Replacing grad p by its equivalent from the Euler*s equation, results In 
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where, by contrast with the equation (1.19), dv / dt is the absolute derivative of the 

vector v with respect to time t. 

Let us consider the expression 

ar’ dv 
--.- 
aqj dt 

= $(v.z)-v. -gg 

It is easy to verify that 

av ar’ d &’ aV _=-- 
4j' @j ’ 

--=- 
dt aqj 3qi 

and consequently 

af dv a,.;ir=-g(v.-$.)-v.-&$~-~ 

Substituting this expression into the formula for Pi we obtain 

p __daTa .- 
3 dt aqj’ +j$+++dt 

+ 

Taking this into account, we can write the equation (1.10) in the form of eqnations of 

motion for a rigid body 

d aT1 aT1 
-y--= 
dt aqj aqi Q j(‘) + Pj (i= 1, . . ., n) (1.21) 

which is under the influence of the given applied forces and of the pressure forces exerted 

by the fluid and air on the cavity walls. Here 

where the summation occurs only along the points on the rigid body. 

Equations (1.21) should be investigated along with the eqnations (1.11) and (1.14) 

with the corresponding boundary conditions. 

2. The equations of motion of a rigid body with a fluid permit first integrals under 

specific conditions [2]. 

In the following it will be assumed that the forces applied to the system and the 

motion of the rigid body are continuous, while the motion of the fluid occurs in its entirety 

ao that the fluid particle coordinates remain continuous functions of their initial values 

and time. 
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It is known that if the constraints imposed on the mechanical system are not dependent 

on time explicitly, and the given active forces possess a s:ationary force fnnction, then 

there exists an energy integral. 

Indeed, let the given condition be satisfied. Let us investigate the Lagrangian functional 

L (qj, qj’, ui, xi) = T + U. Its derivative, on the strength of (1.17) and (1.181, is 

dL d -_- 
dt - dt (2.1) 

i=l 5 

Utilizing the equation for incompressibility (1.14) and applying the Gauss-Ostrogradskii 

theorem, we find, by taking into account the boundary conditions (1.12) and (1.15) 

3 

2s aP 

i=l + 
-& 

But in view of the formulas 

c 
b 

2Hu&s + 1 urdl, 

I 

u&’ = F 
i3 

(p. + 2Ha) u,,dS 

da1 da -- 
dt -- dt= updl, ul=u~cos0 (2.2) 

which can be obtained from the formalaa (1.7) and (1.8) by replacing the symbol 6 by d/dt, 

where ui = U-I+ (i = 1, 2), we obtain,with (1.13) taken into accoant, 

dUa’ 
- = - a dt 2Hu,dS 

Since, by the conservation of the volume of the fluid 

u,,dS = 0 

then obviously 

Equation (2.1) then yields the energy integral 

It is easy to verify by direct computation that 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

so that the integral (2.5) has the nsual form of the conservation of energy integral 
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T $- I1 = const (n = n 1+ p\ n,dz + IIa* = - U + const) 

r 

Here n denotes the potential energy 0; the system. 

Let further, the coordinates qa (a = k 6 1, - . .I n) he cyclic, i.e. 

aL!aq, = 0 (ai=k+l,...,n) (2.7) 

In this case the equations (1.17) yield the cyclic first integrals 

aLlags* = cod (u=k+l,...,n) (2.8) 

The momentum and second momentum integrals [2] are related to the integrals of the 

type (2.8). 

Applying the Routh’s method of ignorable cyclical coordinates it is possible to lower 

the order of the system of differential equations (1.17) for the motion of the rigid body with 

a fluid. Let us consider, for example, the case when the functional 15 is independent of the 

rotation angle of the body about some fixed straight line 0’~s’. Let us introduce the system 

of coordinates O’&&cS’, capable of rotating about the axis x,’ with the angular velocity 

w of the rigid body in its motion about this axis. The angle of rotation q,, of the body 

about x, ’ can be assumed to be the angle between the axes z,‘and &. The kinetic energy 

of the system is represented in the form [3] 

T = T(l)+ q n ‘d’! + l/aq 
x1 n ‘ZJ (2.9) 

where T(l) and ~(1) are the kinetic energy and the projection on the z, ‘axis of the 
X.’ 

second momentum of the system in its motion relative to the system of coordinates 

0’$,52x~; 1 denotes the moment of inertia about the x3 ’ axis. The first integral of the form 

(2.8) 
aL -- = G(‘! + qn’J = k = const 
aqn' x3 

corresponds to the cyclical coordinate q,. 

Hence, we find 

qn = (k - G(‘!)/ J xs 

and exclude this quantity from the Routh functional R = L - q,,‘k. 

Consequently we obtain by the usual method [4] the equation of motion for a rigid 

body with a fluid in form of the Routh equation 

d i3R Ml 
----_o 

dtaQj’ aqi 
(j = 1 , . ..I n-l) (2.10) 

If the function of R does not depend on time explicitely, then these equations along 
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with the equations (1.18) permit a first energy integral 

R, - R. = const (2.11) 

where R, is the homogeneous and of the degree s with respect to the velocities qj’, part 

of the functional R = Ra + Rt -/- Ro- It is easy to verify that 

ti, = Tt2f= T (1) _ ($3 /J w, R. = - II -kZ/V 

so that the integral (2.11) will become 

T@) + l-l 4 k” / 2J = const 

3. The equations of motion for a rigid body with a fluid permit, under certain conditions, 

solutions describing equilibrium or a stationary motion of the system. Let us determine 

these conditions assuming that the given active forces applied to the system are the poten- 

tial ones. Assuming that 4; = 0, pi =0 (i r: 1,2,3, j =I,..., n) in (1.17) we obtain 

3L/dq, = dUjdq, = 0 

Consequently, at the eqailibrinm position of the rigid body with a fluid the force funo 

tion U, or the potential energy of the system II, have extreme1 (stationary) vaInes, Le. 

6U =sII so (3.2) 

Equations (3.1) defiue the coordinates of the rigid body at equilibrium. Withoat loss 

of generality it cart be assumed that qj = 0 (1 = 1, . - . , n) will be the roots of the 

equation (3.1). The fluid at eqnilibrinm occnpies the region ‘CO, bounded by the cavity walls 

and the free sarface. The eqaation for the latter U, - p/p = con& is found by integrat- 

ing the equation (1.18) for ui =;: 0, qj = qj’ = 0. Taking into account the boundary con- 

dition (1.12) it becomes 

pu, - 2i-J.E = const (3.3) 

The constant in the right hand part of the equation (3.3) can be determined from the 

known values of the average curvature H and the force function U2 for some point of the 

free surface. From the differantial geometry [s] it is known that 

2H= 
EN-22FM+GL 

&G--F= 
(3.4) 

where E, F, G, and L, M, N are the coefficients of the first and second differential Gauss 

forms for the surface. Thus, eqaation (3.3) is a nonlinear partial differential equation. 

The form of the free surface S of the fluid at equilibrium is determined by integrating 
the eqaation (3.3) with the boundary condition (1.13) taken into acconnt. The integration 
of this equation is, generally speaking, quite difficult [6]. For the case when the anrface 
tension forces can be neglected, the equation (3.3) becomes the boundary equation for the 
free surface of the fluid at eqailibrium. 
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Let us assume now that among the coordinates qj of the rigid body there is a cyclic 

coordinate q,. Then the equations of motion for a rigid body with a fluid permit a particular 

solution in which all non-cyclic coordinates qj (/’ = 1, . . ., n - 1) remain constant as 

well as the velocity qn’, corresponding to the cyclic coordinate q,, while all non-cyclical ; 

velocities of the body qj’ and the relative velocities ui of the fluid particles are zero. 

Such a solution describes a steady motion representing a uniform rotation of the entire 

system as a single rigid body with an angular velocity qn’ about the axis x,‘. From the 

equation (2.10) for a fixed value of the constant k = ko follow the equations 

cYR,laqj =O (i=i,..., n-l) (3.5) 

for the coordinates qi of the rigid body in steady motion. Consequently,for the steady 

motion the altered potential energy of the system W = - R, = ko2/2J j-n attains the 

extreme1 (stationary) value 

6W=O (3.6) 

Let us assume that Qj = 0 (i = I., - - -, n - 1) satisfy equations (3.5). The fluid 

in this case occupies the region ho, bounded by the walls of the cavity and the free surface 

So. The equation for the latter will be found by integrating (1.18) with 

qj =qj*=o (i=l I..., n-l), qn’ =o, Q =O (i=l, 2,3) 

and by taking into account the boundary conditions (1.12) 

p w, +o”(x;z + x,‘2)/2l - 2u.H = const (3.7) 

Equation (3.7) differs from the equation (3.3) only in the form of the force function; 

everything previously said about eqoation (3.3) is also valid for (3.7). 

Paper [I] gives the definition of the stability of motion for a rigid body with a fluid 

possessing surface tension and proves the theorems reducing the question of stability of 

a steady motion (or equilibrium) to the minimum problem of the altered potential energy W 

(or the potential energy n) of the system. For the cases of practical interest the minimum 

problem of W (or n) can be solved by investigating the second variation 62W (or San). 

In taking the variation the fluid volume q-must be conserved, and let 

W = g + II + h Sdf (h = const) 
5 

The fisrt variation of W is found easily as 

n-1 

NV= 2 awi3qj_ 
j=l aqj p,y,+~_$~(~~‘a+x~‘z)- 2aH--A SY,dS+ 1 

(3.8) n 
+5’ acos8+a,-a2)66,dl 

1 
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It is assumed that the quantity 65 is a continuous differentiable fnnction of the 

curvilinear coordinates u, and v of a point on the free surface of the fluid posse&rtg con- 

tinuous partial derivatives with respect to u, and v and satisfying the condition of con- 

servation of the fluid volume 

c SfdS=O 

h 
(3.9) 

In view of the independence of 8qi and a[ we obtain the equations (3.5) from the 

equation SW = 0 for the coordinates of the rigid body in a stationary motion and the equa- 

tion (3.7) of the free surfaces So of the fluid in the same motion as well as the condition 

(1.13) for the boundary angle. 

For simplicity it will be further assumed that the area of ‘equilibrium’ So is simply 

connected and smooth. The line of intersection of the surface So with the walls of the 

cavity 0, if this line exists, will be denoted by Ia and wil1 be regarded as piece-wise 

smooth. The unit vector of the tangent e to the contour lo is oriented so that in going 

around I0 the region So remains on the left, for the observer located along the outward 

normal n to So. The moving system of coordinates Oqz,x~, fixed to the rigid body will be 

selected so that in the unperturbed position of equilibrium the Ox, axis would coincide 

with the 0’~s’ axis. For brevity we introduce the notation 

after which the equation (3.7) can be expressed as 

Q (0, xi) - 2aH = kconst (3.11) 

Taking the variation of equation (3.8) we obtain the following expression for the 

second variation of W in the neighborhood of the considered stationary motion of the system 

(3.12) 

+ $- [2A1JA2J + (A&“] - S 6 (cD-2Ha--h) 6CdSf $ a8 cos 08cz dl 
80 1. 

Here 

n-1 

AJ = 2 (g), ‘qj, 
j=l j 

AzJ = p (cQ’~ + Q’~) ri’~qj, ri *’ ds (3.13) 

where the index 0 denotes the value of the corresponding quantity for the unperturbed 

motion. 

Let us obtain the explicit expressions for the terms under the integral signs in the last 

two components of the right hand side of the inequality (3.12). We consider the first one. 
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Between the perturbed and unperturbed surfaces of the fluid it is possible, apparently, to 

establish a correspondence along the normals to the unperturbed surface. Also, the vari- 

ation of the average curvature is determined from the formula [S] 

6H= - (2H2 - K) Sg - 1/Z AW (3.14) 

Where 

K = 1 I R,R,, AW = (E66az - 2F661, + C&) / (EG - F2) 

denote respectively the Gauss curvature of the surface So and the second differential psra- 

meter of Bsltrami, @j are the covariant second derivatives of the function 84 Utilizing 

(3.14) and (3.9) we obtain 

[ ( g)06c $2~ (2H* --K) SC + ah’@] 8cdS (3.15) 

(3.16) 

where 

denotes the first differential Beltrami parameter, (@),, and (SQ, are the derivatives 

of the functions x with respect to u, and v respectively, d65 / ds, is the derivative of 

6calong the ontward normal n1 to the contour lo of the surface So. On the strength of (3.16) 

the equality (3.15) can be expressed as 

(3.17) 

% 
6 (@ -2Ha--h) QdS= {[(g), + 2u (2~12 - A)] (sc)x - a~“65) dS+a\ SC 2 dl 

@ LJ 

We find now 

S co8 0 = n2.&nl + nl.6nz. 

On the surface So in the neighborhood of the contour lo, the coordinate lines u, and u 

will be represented by I, and the curves orthogonal to it. The unit vectors of the tangents 

to these curves are e and n,. Also 

nl = ru I I/E, 6nl = 6r, I v/c - r$ I/c/ G 

Aasnmfng that for the points on the contour lo 

we find 
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6r, = (-- G,Sf - 2J46%) ru / 2.E + WE), + (C$E - 2NW / W / rV + NW, + WI n 
6 I/C = r,.gr,/ V G = [(SE), + (G& - 2N6C) / 2C] 03 

SO that 

Taking into account that the vector np is orthogonal to the vector r,, = v&., we 

find 

nz.6a = [(SQ,/ V’c + IV I’%% / Cl n.na 

According to Meusnier’s formula N / G = 1 /Rnl, where R,, is the radius of curvature 

of the cross-section to the normal surface So in the direction n,l an element of the arc of 

which is ds, = l/&. 

nr*bn,= (d6C/dsl+ 6~1/R,,)sinfl (3.18) 

Similarly we find 

nl*6n, = - sin 866, I R,, (3.19) 

where R,, denotes the radius of curvature of the cross-section normal to the walls of the 

cavity o in the direction n, . Summing the equalities (3.18) and (3.19) we obtain 

6 cos 8 = (d&- I ds, + SC1 I R,, - SY, 1 R,,J ain 0 (3.20) 

Note that the formula (3.20) allows one to obtain the boundary condition for the functions 

gon the contour Is of the surface So for the case of the linear treatment of the problem. 

Indeed, from the condition (1.13) for the boundary angle formed by the free surface of the 

fluid and the cavity walls, it follows that in the first approximation we have on the contour 

1 0) 

ds6/da=65a/R,,--651/R % for sinO#O (3.21) 

When sin 0 = 0, it is clear that on &, 

6~=5inOi&=O (3.22) 

On the basis of the equalities (3.12), (3.17) and (3.20) as well as (1.8). the expression 

for the second variation of the altered potential energy of the system becomes 
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(3.23) 

while the function @ (q3, q) and the quantity A 1J and AZJ are defined by the equalities 

(3.10) and (3.13). 

Note that it is poeeibie to obtain, from the expression (3.231, the particular formula 

for the second variation of the potential energy system (for o = 0) : 

(3.24) 

+ 2a(2Ha --Kj]w2- aV%~]d.S+ a~(6~~iRrr-8g.iR~)8~2sin%dl 

From the principles of the variational calculus it is known that if the altered potential 

energy of the system IV is to have a minimum it is neceeeary that its second variation 6aW 
be non-negative, and it is sufficient that the second variation be strongly positive for all 

sufficiently small abeoluta values of q- and bi, which eatiefy the condition that the con- 
dition of in~ompreeeibility and (3.9) art not ~mult~eonely equal to zero. 

The problem of determining the conditions for strong positiveness of the second vari- 

tion 6aW atqbe a known method [7], be reduced to the problem of finding the criterion of 

poeitiveneee of the emalleet sigen-value of the corresponding boundary value problem. 

4. Let ue investigate the question of the character of eqnilibriam of a rigid body with 

a fluid in the case when the potential energy of the system does not have a minimum at 

the position of eqnilibrinm. For the system with a finite number of degrees of freedom the 

proofs of the Lagrange redaction theorem are given by Liapnnov and Chetaev [4]. 

An analogoae theorem can be proved for a rigid body with a flaid. Let us restrict 

oarselves to the case when in the neigh~thood of the position of equilibtiam the potential 

energy of the system is of the form 

where fit@ is a k-th order homogenons functional for the deviation of the eyetsm from the 
. * 

equlllbriurn position. 

Tksorem 4.1. If for an arbitrarily small neighborhood of the position of eqailibrinm for 

a rigid body with a fluid the potential energy fl of the system can aeenme negative valnee 

and, if at the came time, the signs of the expressions n(‘) j- II@) -j- . . l and 

2D@f + 3rw + . . . are defined by the quadratic functional n@) , then the position 

of equilibrium is unstable. 

Proof. Assume that in the position of equilibrium the coordinates of the rigid body are 
qj = 0 ci = 1, . . .) n), the coordinates of flaid particles are it = zio (i = 1, 2, 3) and 
that the flaid fills the volnute 20. Let at the position of equilibrium the system potential 
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energy be II = 0 and be not a minimum ; at the neighborhood of equilibrium there exists a 

region where II < 0. Disturbing the equilibrium position of the system momentarily, we 

investigate the perturbed motion which is described by the equations (1.17), (X.18) and 

(1.14) with the corresponding boundary conditions. 

The radius vector of the displacement from equilibrium of the fluid particle relative to 

the rigid body will be denoted by Ar = r - r+ Obviously, 

Ar= Aor+ iudt (4.1) 

where A$ is the radius vector of the initial fluid displacement, and where in view of 

incompressibility, div A$ = 0. Then, in view of (1.14) it follows from (4.X) that 

div Ar = 0 (4.2) 

The slope of the perturbed fluid surface relative to the unperturbed surface is character- 

ized by the partial derivatives au and n,, of the function n (u, Y) = A<. The maximum of 

] rsu. I, and 1 a, 1 will be denoted by ‘~7 which we shall call the inclination of the perturbed 
surface relative to the unpa~arbed one. 

Let us consider the functional [4] 

(4.3) 

In asufficiently small neighborhood of the equilibrium position, i.e. in the region of 

small absolute values of the corrdinates q- and L\zi, the inol~ations V, and the velocities 

4; aad ui we choose an infinitedimensifonal regfon (C) existing for arbitrarily small 

absolute quantities qj, hi, V, qj and ui and defined by the sfmultaneons inequalities 

(4.41 

The existence of the first of these inequalities for sufficiently smallpj’, and ui is 

obvfoas in view of the conditions of the theorem for the nonexistence of the minimum of fI. 

At the points in the neighborhood of the position of equilibrium where this inequality is 

fulfilled, the velocities pi’, and ui can always be selected of such a sign that the second 
inequality in (4.4) is fulfilled. 

In the region (C) the functional V is, obviously, bounded, i.e. there exists such a 

positive nnmbsr N that in the region (C) 

IVI<N (4.5) 

The time derivative of the functional V is, in view of the equations of perturbed 
motion, equal to 

Ir* =--(T+n){i (gqj +ayq;) f 
-j=t j 
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Taking into account the rslation 

(4.6) 

the validity of which can be verified by direct computation, the expression for V‘can be 

written as 
(4.7) 

As the consequence of the fact that the constraints imposed on the rigid body are 

assumed not to depend explicitely on time, the kinetic energy T is positive-definite with 

respect to g; and ui. For sufficiently small absolute values of the quantities pi and dr;, 

the expression 

will, because of continuity, also be positive-definite with respect to qj’ and Ui’ 

Let as now consider the remaining terms in the expression (4.7). Utilizing the formnia 

(3.24) and taking into account that FI = II(*) + ITt3) _t . . ., where n(2) = @II / 2, 
n(3) = 6s~ / 3!, we find 

so that 

Further, in view of (4.2) and (1.12) we obtain 

i ~~Axidc=a{ [ZH-2(2H2-K)n--A’n]ndS 
i-1 : S, 

Applying Green’s formula (3.16) results in 
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3 

BS -j$A~~dr=a [Wn-2(2Ha 
i=l + 

s 
SO 

-K)n’+~“n]dS-ajn~dl 

L 

Thus, with the conditions (3.21) and (3.11) taken into account, we obtain 

where the dots indicate terms of the type- 3ff(‘) + . , , According to (4.7) we find 

V’ =-(T+ ‘){2’+$J gqj+f’Sf: gAxidS_2ff(‘)+ es.} 
(4.9) 

j=1 ‘5 i=l 

Since in the region (C) the potential energy is negative, while the signs of a and of the 

expression 2ffi2) $ 3fIt3) + . . . are determined by the terms of second order IIt2) < 0, 

then in the region (C) this expression is negative definite: 2IIt8) + Sff(8) + . . . < 0. 

Consequently, in the region (C) the derivative of the functional V is positive definite 

with respect to qj, AZj, qj’, and ut, 0. 

Also the positive definiteness of the functional V’ in the region of positiveness of 

the functional V is determined analogously to the sign-definiteness of the function [4] in 

the region V > 0. Selecting the initial perturbations 49, Aoy, Vo, qjo’ and uio in the 

region (C) arbitrarily small so that the fnitial value V. > 0, we find from the equation 

t 
v=V,+ V’dt 

s 
t. 

(4.10) 

that in the course of time the inequality (4.5) will be violated, which proves the instability 

of the position of equilibrium. 

Theorem 4.2. If in the position of equilibrium of a rigid body with a fluid potential 

energy of the system lJ = n(2) + n(3) -I- . . . does not have a minimum and this is 

established from its second variation of n(2) without the necessity of considering higher 

order terms, then the equilibrium position is unstable. 

The proof can be presented by an almost identical repetition of the proof given by 

Chetaev [8] for the analogous case of a system with a finite number of degrees of freedom. 

fn an infinite-dimensional space of the variables q., hi, nu and,nu we consider the 

hypersphere with the center at the position of equilibriim and an arbitrarily small radius 

E > 0. On this hyperapherb the continuous functional n assumes for some values of os 

of the considered variables, its smallest value &. In accordance with the assumption about 

the potential energy n this smallest value will be negative and is determined by the 
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functional l-f@). Consequently, &I will be of second order of smallness in comparison with 

e. Let the region which is being studied for instability of the perturbed motions, be defined 

by the inequalities 

14jl<19 I Axi1-C 1, I qj’ I < It l”il< 19 IVI<l (4.11) 

for an arbitrarily small positive 1. It will be assumed that the quantities 1 and e are related 

by some definite number, which may be very large. 

Under such an assumption about the choice of 1 and e , the expression 

2l-b) + n(8) -J? 2rf(4) + . . . (4.12) 

in the region (4.11) will undoubtedly be negative. In the perturbed motion the initial values 

of our variables will be u s, and the initial values of all velocities will be assumed zero. 

Such a perturbed motion will occur in accordance with the law of kinetic energy 

T3-ff = llo and, consequently, will occur in the region defined by the inequality 

Let us consider the functional 

(4.14) 

and its time derivative which in view of the equations of perturbed motion (1.17). (1.18) 

and (1.14) is 

(4.15) 

For the considered perturbed motion occurring in the region (4.13), the derivative V 

will be positive. Indeed, as was shown above, the expression 

for sufficiently small 1 will be positive-definite with respect to qj’ and Ui, end 

- (2l-G’) + 3l-9) $- . . .) > 0 (4.16) 

in view of (4.12) aud (4.13). Let us denote by 1 ‘the minimnm of the expression in the left 

hand side of the inequality (4.16) inside the region defined by the inequalities (4.11) and 

(4.13). From the eqnation (4.10), where in the given came Vo = 0, we conclude that 

v > 1’ (t - to), as long as the variables do not violate the ineqnalitiea (4.11) during the 

interval of to to t. Consequently, with the course of time the inequality (4.5) will be 

violated. The theorem is proved. 
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It is worth noting that, in the linear formulation, the reduction of the Lagrange theorem 

for a rigid body with a fluid was proved by Krein [9], in whose work the surface tension waa 

not considered. In the nonlinear formulation the reduction of the Lagrange theorem for solid 

bodies was considered by A.A. Movchan [lo] with the assumption that the potentials of 

external and internal forces are homogeneous of order m. 
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